1 概述
在傳統(tǒng)的逆變電源采用模擬控制無法克服其固有缺點的情況下,人們越來越多地求助于數(shù)字化方案來減小控制電路的復(fù)雜程度、提高電源設(shè)計和制造的靈活性,同時采用更先進的控制方法來提高逆變電源系統(tǒng)的輸出波形質(zhì)量和可靠性。因此,由模擬控制向數(shù)字控制的轉(zhuǎn)變是逆變電源發(fā)展的必然趨勢。
隨著工業(yè)用高速數(shù)字信號處理器(DSP)的發(fā)展和應(yīng)用,逆變電源控制由模擬控制向數(shù)字化控制的轉(zhuǎn)變成為了可能。由于具有超強的數(shù)據(jù)處理能力和很快的處理速度,配合高性能的AD變換器,DSP能夠瞬時地讀取逆變電源的輸出,并實時地計算出輸出PWM值。正是DSP的采用,使得在模擬控制中存在的許多問題得到了很好的解決,并且一些先進的控制策略也逐漸應(yīng)用于逆變電源的控制之中。這樣對于逆變電源負載的不確定性,數(shù)字化系統(tǒng)可以對負載動態(tài)變化產(chǎn)生的諧波進行動態(tài)的補償,而不需人為地干預(yù),從而使逆變電源的輸出波形質(zhì)量達到可接受的水平。
本文從SPWM逆變電源的結(jié)構(gòu)出發(fā),利用古老。的PID控制,提出了一種基于電壓瞬時值的數(shù)字方案通過了仿真。
2差模電感 逆變電源物理模型
在逆變系統(tǒng)中,多采用全橋或半橋結(jié)構(gòu)。圖1為一個帶有LC濾波器的單相全橋逆變器的主電路結(jié)構(gòu)圖。
以Vc和iL為狀態(tài)變量的狀態(tài)方程為:
那么Vi對輸出電壓V0的傳遞函數(shù)為:
由此可以得到逆變器的原理框圖,如圖2所示。
3 數(shù)字控制方案
本系統(tǒng)采用雙環(huán)控制的PID調(diào)節(jié)。PID控制以其簡單、參數(shù)易于整定、發(fā)展成熟之特點,廣泛應(yīng)用于工程實踐之中,逆變電源的控制也不例外。雙環(huán)控制既保證了系統(tǒng)鐵芯電感的穩(wěn)態(tài)特性,又可以提高系統(tǒng)的動態(tài)性能。
3.1 數(shù)字PID算法
PID控制是應(yīng)用最廣泛的一種控制規(guī)律,PID表示比例(proportional)一積分(intergral)一微分(differentia)。設(shè)PID調(diào)節(jié)器如圖3所示。
調(diào)節(jié)器的輸出與輸人之一體電感器間為比例積分一微分的關(guān)系,即:
若以傳遞函繞行電感數(shù)的形式表示:
其中:Ti為積分時間常數(shù);Td為微分時間常數(shù);Kp為比例系數(shù);Kd=Kp/Ti為積分系數(shù);Kd=KpTd為微分系數(shù)。
在計算機控制系統(tǒng)中使用的是數(shù)值PID調(diào)節(jié)器,就是對式(1)的離散化,離散化時,令:
其中:丁是采樣周期。
顯然,上述離散化過程中,采樣周期T必須足夠短,才能保證有足夠的精度。由式(4)和式(7)可得到:
式(8)即數(shù)字PID調(diào)節(jié)器的輸出輸入關(guān)系式。
PID算法蘊含了動態(tài)過程中過去、現(xiàn)在和將來的主要信息。其中比例(P)代表了目前的信息,起校正偏差的作用,使過程反應(yīng)迅速。微分(D)在信號變化時有超前控制作用,代表了將來的信息。積分(1)代表了過去的信息,他能消除靜差,改善系統(tǒng)的靜態(tài)特性。因此,設(shè)計好的PID控制器有動態(tài)響應(yīng)快、穩(wěn)態(tài)精度高、魯棒性強的優(yōu)點,是工程實踐中應(yīng)用最為廣泛的一類控制器。對于逆變電源,由于空載的SPWM逆變器近似于臨界振蕩環(huán)節(jié),積分作用會增加相位的滯后,這樣會對系統(tǒng)的穩(wěn)態(tài)性能產(chǎn)生負面的影響,所以在設(shè)計瞬時值反饋的PID控制器時總是采用比例控制(P)或者比例微分(PD)控制。
3.2 數(shù)字控制方案
控制系統(tǒng)的框圖如圖4所示。